Mechanical basis for lingual deformation during the propulsive phase of swallowing as determined by phase-contrast magnetic resonance imaging.

نویسندگان

  • Samuel M Felton
  • Terry A Gaige
  • Timothy G Reese
  • Van J Wedeen
  • Richard J Gilbert
چکیده

The tongue is an intricately configured muscular organ that undergoes a series of rapid shape changes intended to first configure and then transport the bolus from the oral cavity to the pharynx during swallowing. To assess the complex array of mechanical events occurring during the propulsive phase of swallowing, we employed tongue pressure-gated phase-contrast MRI to represent the tissue's local strain rate vectors. Validation of the capacity of phase-contrast MRI to represent local compressive and expansive strain rate was obtained by assessing deformation patterns induced by a synchronized mechanical plunger apparatus in a gelatinous material phantom. Physiological strain rate data were acquired in the sagittal and coronal orientations at 0, 200, 400, and 600 ms relative to the gating pulse during 2.5-ml water bolus swallows. This method demonstrated that the propulsive phase of swallowing is associated with a precisely organized series of compressive and expansive strain rate events. At the initiation of propulsion, bolus position resulted from obliquely aligned compressive and expansive strain, vertically aligned compressive strain and orthogonal expansion, and compressive strain aligned obliquely to the styloid process. Bolus reconfiguration and translocation resulted from a combination of compressive strain occurring in the middle and posterior tongue aligned obliquely between the anterior-inferior and the posterior-superior regions with commensurate orthogonal expansion, along with bidirectional contraction in the distribution of the transversus and verticalis muscle fibers. These data support the concept that propulsive lingual deformation is due to complex muscular interactions involving both extrinsic and intrinsic muscles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anatomical basis of lingual hydrostatic deformation.

The mammalian tongue is believed to fall into a class of organs known as muscular hydrostats, organs for which muscle contraction both generates and provides the skeletal support for motion. We propose that the myoarchitecture of the tongue, consisting of intricate arrays of muscular fibers, forms the structural basis for hydrostatic deformation. Owing to the fact that maximal diffusion of the ...

متن کامل

ANALYTICAL STUDY OF EFFECT OF BILAYER INORGANIC AND ORGANIC COATING AROUND THE IRON OXIDE NANOPARTICLES ON MAGNETIC RESONANCE IMAGING CONTRAST

Background & Aims: In recent years, iron oxide nanoparticles have been used in contrast-enhanced magnetic resonance imaging for diagnosing a wide range of diseases. In order to provide biocompatibility and prevent the toxicity of the nanoparticles, using organic or inorganic coating around these nanoparticles is important for their application. The aim of this study is to investigate the effect...

متن کامل

Biomechanical basis for lingual muscular deformation during swallowing.

Our goal was to quantify intramural mechanics in the tongue through an assessment of local strain during the physiological phases of swallowing. Subjects were imaged with an ultrafast gradient echo magnetic resonance imaging (MRI) pulse sequence after the application of supersaturated magnetized bands in the x and y directions. Local strain was defined through deformation of discrete triangular...

متن کامل

AGI September 40/3

Napadow, Vitaly J., Qun Chen, Van J. Wedeen, and Richard J. Gilbert. Biomechanical basis for lingual muscular deformation during swallowing. Am. J. Physiol. 277 (Gastrointest. Liver Physiol. 40): G695–G701, 1999.—Our goal was to quantify intramural mechanics in the tongue through an assessment of local strain during the physiological phases of swallowing. Subjects were imaged with an ultrafast ...

متن کامل

Application of Magnetic Resonance Imaging (MRI) as a safe & Application of Magnetic Resonance Imaging (MRI) as a safe & non-destructive method for monitoring of fruit & vegetable in postharvest period

To investigate and control quality, one must be able to measure quality-related attributes. Quality of produce encompasses sensory attributes, nutritive values, chemical constituents, mechanical properties, functional properties and defects. MRI has great potential for evaluating the quality of fruits and vegetables. The equipment now available is not feasible for routine quality testing. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 103 1  شماره 

صفحات  -

تاریخ انتشار 2007